Right Care
Right Place
Right Time

Frederick C. Ryckman, MD
Professor of Surgery / Transplantation
Sr. Vice President – Medical Operations

Cincinnati Children’s Hospital
Cincinnati, Ohio

James Anderson Center for Health Systems Excellence

IHI 26th National Forum
December 7, 2015

Health Care Delivery System Transformation
Strategic Improvement Priorities and System Level Measures

System Level Measures

<table>
<thead>
<tr>
<th>ACCESS</th>
<th>FLOW</th>
<th>PATIENT SAFETY</th>
<th>CLINICAL EXCELLENCE</th>
<th>REDUCE HASSLES</th>
<th>TEAM WELLBEING</th>
<th>FAMILY CENTERED CARE</th>
</tr>
</thead>
<tbody>
<tr>
<td>3rd Next available appointment</td>
<td>% of eligible patients with delays</td>
<td>Adverse drug events (ADES) per 1,000 doses</td>
<td>Codes outside the ICU rate/1000 days</td>
<td>Touch Time for Providers</td>
<td>Employee Satisfaction</td>
<td>Overall Rating: Patient Experience</td>
</tr>
<tr>
<td>Discharge Prediction and Execution</td>
<td>Growth Prediction</td>
<td>Nosocomial infection rates</td>
<td>Standardized PICU Mortality Ratio – Expected/Actual</td>
<td></td>
<td>Staffing Effectiveness</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bloodstream infection rate</td>
<td></td>
<td>Functional Health Status</td>
<td>Physician Satisfaction</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Surgical site infection rate</td>
<td></td>
<td></td>
<td>Voluntary staff turnover rate</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>infection rates: VAP</td>
<td></td>
<td></td>
<td>Accident rate for staff with Work days lost</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Serious Safety Events</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Risk Adjusted Cost per Discharge

M15
I have nothing to disclose
Challenges of Growth
Operating Above Optimal Occupancy

We are increasingly operating above optimal census of 460 (85% occupancy) and frequently operating above a system stressing census of 485 (90% occupancy)

What Do Patients “Hire” Us to Provide
What do they call “Value”

- Make the Right Diagnosis
- Deliver the Correct Therapy / Treatment
- Prevent Complications or Errors in Care
- Deliver Safe Care regardless of the Inherent Risks
- Get Me Home, Keep me at Home
- Respect my needs
- Give me my Money’s Worth

This is all FLOW management – it is essential for SAFETY, PATIENT / FAMILY EXPERIENCE and QUALITY DELIVERY
“Flow” is a Safety Initiative

- Prediction Framework for Safety
- Getting the “Rights” Right
 - Right Diagnosis and Treatment
 - Right Patient in Right Bed – Location
 - Right Nursing Staff and Staffing Expertise
 - Disease Specific Expertise
 - Equipment Expertise
- Requires ability to “Predict” future needs, and manage present capacity control variability
- Operations Management techniques to understand and manage variability are the key to success

Value Equation for Healthcare

\[
\text{Value} = \frac{(\text{Outcomes} + \text{Patient Experience}) \times \text{Appropriateness}}{\text{Cost} + \text{“Hassle Factor”}}
\]
Critical Flow Failure Recognition

Weekly Critical Flow Failures
Over the last 52 weeks

Critical Patient Flow Failures by Month

Last Update: 9/14/2015 by M. Ponti-Zins, James M. Anderson Center for Health Systems Excellence
Data Source: MPS
Key Drivers for Capacity Management

<table>
<thead>
<tr>
<th>IHI Drivers</th>
<th>CCHMC Initiative</th>
<th>Operations Possibilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shape / Reduce Demand</td>
<td>Predictable Care Delivery</td>
<td>Best Practices, Analysis of ALOS and outliers, Standardize then Customize, Eliminate unnecessary care</td>
</tr>
<tr>
<td></td>
<td>Management of Variability</td>
<td>Identify Patient Streams – Inpatient/Outpatient/OR, Manage System Variation</td>
</tr>
<tr>
<td>D/C Match</td>
<td>Optimization of Flow Delivery</td>
<td>Placement initiatives – D/C Matching plans, Discharge prediction and planning, Home Care, Parent Initiatives</td>
</tr>
<tr>
<td></td>
<td>Capacity Prediction</td>
<td>Integration of simulation modeling and planning, “Environmental Impact” Reports for growth programs</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Flow Failure Analysis, GARDiANS</td>
</tr>
</tbody>
</table>

IHI Theory on Flow

Outcomes	Primary Drivers	Secondary Drivers	Specific Change Ideas
	Shape or Reduce Demand	Relocate care in ICUs in accordance with patients’ EOL wishes	1. Assess seasonal variations and changes in demand patterns and proactively plan for variations
		Relocate care in Med/Surg Units to community-based care settings	2. Develop advanced illness planning programs (hospital-based and community-based)
		Relocate low-acuity care in EDs to community-based care settings	3. Adjust admission policies to reduce high-risk populations
		Decrease demand for hospital beds through delivering appropriate care	4. Implement Strategic Capacity Management (SCM) (i.e., amendments, discharges, and discharges)
		Decrease demand for hospital beds by reducing hospital-acquired conditions	5. Real-time demand and capacity management processes
	Match Capacity and Demand	Increase capacity to meet hourly, daily and seasonal variations in demand	6. Flex capacity to meet predicted demand patterns
		Early recognition for high census and surge planning	7. Improve efficiency and throughput in the OR, ED, ICUs, and Med/Surg Units
		Improve efficiencies and throughput in the OR, ED, ICUs, and Med/Surg Units	8. Reduce surgical and unscheduled flows in the OR
	Reroute the System	Discharge Line Optimization (frail elders, SNF residents, stroke patients, etc.)	9. ED efficiency changes to reduce LOS in ICUs, EDs, and Med/Surg Units
		Reducing unnecessary variations in care and managing LOS “outliers”	10. Increase LOS in ICUs (i.e., timely consults, tests, and procedures)
		Redesign surgical schedules to improve throughput and to improve smooth flow of patients to downstream ICUs and inpatient units	
		Separate scheduled and unscheduled flows in the OR	
		ED efficiency changes to decrease LOS	
		Increase LOS in ICUs (i.e., timely consults, tests, and procedures)	
		Decrease LOS on Med/Surg Units (case management for patients with complex medical and social needs)	
		Increase LOS on Med/Surg Units (case management for patients with complex medical and social needs)	
		Advance planning for transfers to community-based care settings	
		Cooperative agreements with care facilities, SNF’s and nursing homes	
Key Drivers for Capacity Management

<table>
<thead>
<tr>
<th>IHI Drivers</th>
<th>CCHMC Initiative</th>
<th>Operations Possibilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shape / Reduce Demand</td>
<td>Predictable Care Delivery</td>
<td>Evidence Based Best Practices, Analysis of ALOS and outliers, Standardize then Customize, Eliminate unnecessary care</td>
</tr>
<tr>
<td></td>
<td>Management of Variability</td>
<td>Identify Patient Streams – Inpatient/Outpatient/OR Manage System Variation</td>
</tr>
<tr>
<td>D/C Match</td>
<td>Optimization of Flow Delivery</td>
<td>Placement initiatives – D/C Matching plans Discharge prediction and planning, Home Care, Parent Initiatives</td>
</tr>
<tr>
<td></td>
<td>Capacity Prediction</td>
<td>Integration of simulation modeling and planning “Environmental Impact” Reports for growth programs</td>
</tr>
<tr>
<td>System Re-Design</td>
<td>Capacity Management</td>
<td>Simulation for design and patient placement “Environments Impact” Planning</td>
</tr>
<tr>
<td></td>
<td>Flow:Safety Matching</td>
<td>Flow Failure Analysis, GARDIANS</td>
</tr>
</tbody>
</table>

Evidence Based Care

- Evidence Based Care Guidelines serve as an interface between rapidly evolving scientific information and busy clinical practices
- Developed by Inter-disciplinary teams – experts
- Implementation
 - Awareness of recommendation to facilitate change
 - Easy access to the Evidence
 - Feedback on Outcomes
 - Feedback on further improvements
- Culture of Improvement / Evidence Based Care
Bronchiolitis

- Population – Infants 1 year or younger with bronchiolitis
- 3 years control data vs. 3 years post implementation
- Results
 - Admissions – 30% decrease
 - LOS – 17% decrease
 - Nasal Washings (RSV) – 52% decrease
 - Chest X Ray – 14% Decrease
 - Respiratory Therapies – 17% decrease, repeat Tx - 28% decrease
- Net Cost Reduction
 - Total Costs – 14% decrease
 - Respiratory care services – 72% decrease
- Re-Admissions – No change

Cytomegalovirus Prophylaxis

- 75% Decrease in CMV infection – liver/intestine transplants
- Decreased IV-IGG expense

Danziger-Isakov, Lara et al. CCHMC Integrated Solid Organ Transplant
Yearly SSI Patients - CCHMC

774 SSI’s

9 Years
387 SSI’s Prevented

337 SSI’s

Case Average
10 days LOS
$27,000.00

Business Case
3870 days LOS
$10.5 million

Standardization for Outcomes
Merging Evidence and Practice

SSI Accomplishments

- Baseline rate: 4.4 SSIs/100 procedures, Current Rate: 1.7 SSIs/100 procedures
 - 60% reduction
- Overall SPS - Estimated 3,699 fewer children harmed
- Since October 2009 - $79 million in health care costs saved

Toltzis P, O’Riordan M, Cunningham DJ, Ryckman FC, Bracke TM, Olivea J, Lyren A.
Inflammatory Bowel Disease

Remission rate
(PGA, Centers >75% registered)

71 Care Centers
>19,500 patients
>575 physicians
>35% of all IBD patients

Key Drivers for Capacity Management

<table>
<thead>
<tr>
<th>IHI Drivers</th>
<th>CCHMC Initiative</th>
<th>Operations Possibilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shape / Reduce Demand</td>
<td>Predictable Care Delivery</td>
<td>Evidence Based Best Practices, Analysis of ALOS and outliers, Standardize then Customize, Eliminate unnecessary care</td>
</tr>
<tr>
<td></td>
<td>Management of Variability</td>
<td>Identify Patient Streams – Inpatient/Outpatient/OR Manage System Variation</td>
</tr>
<tr>
<td>D/C Match</td>
<td>Optimization of Flow Delivery</td>
<td>Placement initiatives – D/C Matching plans Discharge prediction and planning, Home Care, Parent Initiatives</td>
</tr>
<tr>
<td></td>
<td>Capacity Prediction</td>
<td>Integration of simulation modeling and planning "Environmental Impact" Reports for growth programs</td>
</tr>
<tr>
<td>System Re-Design</td>
<td>Capacity Management</td>
<td>Simulation for design and patient placement "Environments Impact" Planning</td>
</tr>
<tr>
<td></td>
<td>Flow/Safety Matching</td>
<td>Flow Failure Analysis, GARDIANS</td>
</tr>
</tbody>
</table>
Surgical Streams of Care

- **Urgent / Emergent Surgery**
 - Predictable and Measurable – Natural Variation
 - Possible to Model
 - Can be managed within the System with resource allocation
 - Delay \(\rightarrow\) Increased risk and worse outcomes

- **Elective Surgery**
 - Unpredictable – Whim of Surgical Schedule
 - High variability over time
 - Delay \(\rightarrow\) Case specific risk

- **Initial Design around Urgent Needs**
 - Goal – No urgent cases in Block Time
 - Allocate “Block” for Urgent Needs

Traditional Block

- Reactive System
- Urgent Emergent Cases placed within Block Time as needed
- Elective Case Plan disrupted, prolonged waiting time for elective patients
- Inefficient (Unsafe) Access for Urgent Cases
- Push complex Elective Cases into the late hours
 - Overtime
 - Wrong Team in OR

INITIAL MODEL

TWO CASE SCHEDULING TYPES

SCHEDULED CASES
85-90% all Cases

EMERGENCIES
10-15% of all Cases

DAILY SCHEDULE

95% of all OR time allocated to Doctor Specific Blocks

Emergencies done at end of the day, or forced into slots between scheduled cases.

RESULT

- Long Add-On List at the conclusion of the day
- Long Waiting Times for parents and children with urgent needs
- Often doing complex cases in evening or at night when resources were limited

END OF DAY

Not Ideal
Scheduling Guidelines – A to E

GUIDELINES FOR SURGICAL CASE GROUPING DIAGNOSES/PROcedures
(guideline only: medical judgment required) Revised Master 031307

Acute Life and Death Emergencies

A < 30 Minutes
- A to E
- NOT RECOMMENDED
- A

Urgent C < 4 Hours
- A to E
- NOT RECOMMENDED
- A

Add-on case to elective schedule
- E < 24 Hours

Emergency, but not immediately life threatening

B < 2 Hours
- A to E
- NOT RECOMMENDED
- A

Semi-Urgent D < 8 Hours
- A to E

Options from Simulation

<table>
<thead>
<tr>
<th># Case Included</th>
<th># Rooms</th>
<th>Average Waiting Times (minutes)</th>
<th>Probability 1 or More Rooms Will Be Available</th>
<th>Utilization Rate</th>
<th>Recommendations/Considerations</th>
</tr>
</thead>
</table>
| 1 A, B, C, D, “missing” treated as B | 3 | A: 45 B: no waiting C: 31 D: 103 | 6/7 | 46% | NOT RECOMMENDED
- Must wait for A case would exceed total limit |
| 2 A, B, C, “missing” treated as B | 3 | A: 21 B: no waiting C: 36 | 7/8 | 24% | NOT RECOMMENDED
- Low utilization rate |
| 3 A, B, C, “missing”) | 3 | A: 17 B: 19 C: 23 | 1/1 | 16% | NOT RECOMMENDED
- Low utilization rate |
| 4 A, E, “missing” treated as D | 3 | A: 18 B: 19 C: 24 D: no waiting | A: no waiting 4/5 B: waiting 70% 10/10 | 6/7 | NOT RECOMMENDED
- Low utilization rate |
| 5 A, E together, “missing” treated as B | 2 | missing E will take any A-E case | A: 7 B: no waiting C: 16/17 D: 17 | 1/1 | RECOMMENDED
- Very good waiting times (Wait for A case would exceed stated limit about 1/3/5/12 weekdays (21.4 weeks)) |

Health Systems Excellence

James M. Anderson Center
For
Healthcare Improvement
Block with Urgent Access Assured

- Predictive system
- Urgent Cases in Defined Rooms with Scheduled Teams
- Resources needed can be modeled
- Care based on Urgency / Medical Need

B-E Case Access - % Successful

Chart showing OR Renovation:
1 Add-On Room Closed
"A" Case Access Times – Target 30 Minutes

ICU Bed Availability – ICU Scheduling

Case Statistics by Category

<table>
<thead>
<tr>
<th>Category</th>
<th>Total PICU Days</th>
<th>Case Count</th>
<th>ALOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Short</td>
<td>224.47</td>
<td>177</td>
<td>1.27 (27%)</td>
</tr>
<tr>
<td>Medium</td>
<td>304.74</td>
<td>82</td>
<td>3.72 (37%)</td>
</tr>
<tr>
<td>Long</td>
<td>302.56</td>
<td>31</td>
<td>9.76 (36%)</td>
</tr>
<tr>
<td>Grand Total</td>
<td>831.78</td>
<td>290</td>
<td>2.87</td>
</tr>
</tbody>
</table>

Short: 61% cases, 27% days
Long: 11% cases, 36% days
Key Drivers for Capacity Management

<table>
<thead>
<tr>
<th>IHI Drivers</th>
<th>CCHMC Initiative</th>
<th>Operations Possibilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shape / Reduce Demand</td>
<td>Predictable Care Delivery</td>
<td>Evidence Based Best Practices, Analysis of ALOS and outliers, Standardize then Customize, Eliminate unnecessary care</td>
</tr>
<tr>
<td></td>
<td>Management of Variability</td>
<td>Identify Patient Streams – Inpatient/Outpatient/OR Manage System Variation</td>
</tr>
<tr>
<td>D/C Match</td>
<td>Optimization of Flow Delivery</td>
<td>Placement initiatives – D/C Matching plans Discharge prediction and planning, Home Care, Parent Initiatives</td>
</tr>
<tr>
<td></td>
<td>Capacity Prediction</td>
<td>Integration of simulation modeling and planning “Environmental Impact” Reports for growth programs</td>
</tr>
<tr>
<td>System Re-Design</td>
<td>Capacity Management</td>
<td>Simulation for design and patient placement “Environments Impact” Planning</td>
</tr>
<tr>
<td></td>
<td>Flow: Safety Matching</td>
<td>Flow Failure Analysis, GARDIANS</td>
</tr>
</tbody>
</table>

Discharge Prediction

- Various approaches to Discharge Management
- 1980’s – Keep it a Secret
- 1990’s – 2000’s Discharge goals
 - AM before 11 > 30-40%
 - “Shift” goals
 - 4 hour time block goals with prediction of “window”
- Reactive
- “Not Patient Centered”
- 2008 - Prediction
- 2013-14 – Discharge when Medically Ready
Discharge when Medically Ready

- Criteria based entirely on completion of necessary treatment plan
- Discharge criteria are determined on admission by treating physician / service
- Standardization of criteria for all common treatment protocols –
 - All Hospital Medicine Pediatrics
 - Surgery – Gen, ENT, Orthopedics, Cardiac
- Develop mechanism to execute

Timeline for DC when Medically Ready

- Criteria established at admission
- Nurse at bedside notifies service when Medical discharge criteria are met
- Discharge from floor in < 2 hours
- Review Length of Stay and Re-Admissions as balancing measures

Not about Speed – Now about Efficiency
SMART AIM
Increase percentage of all HM patients who have met* medically ready criteria who will be discharged within two hours of reaching that goal* on A6S, A6N, LA1W from 75% to 80% by June 30, 2014

GLOBAL AIM
Productivity: Optimize use of facilities and staff and improve patient flow to achieve 20% greater utilization of existing assets by June 30, 2015

KEY DRIVERS
- Criteria for Medically Ready Defined at Admission
- Shared Ownership/Accountability and Buy-In Among Physicians and Nurses
- Communication regarding prediction of discharge and defined goals is ongoing through the hospital stay
- Potential Barriers to Discharge are Clearly Articulated and Mitigation Plans Established
- Performance by team is transparent
- Evidence of Preoccupation with Failure
- Clear expectations for Parents/Families

INTERVENTIONS (LOR)
- Agreement among HM attendings and nursing staff of discharge criteria for order set diagnoses and general admissions (LOR 2)
- 1) 8 pm Huddle discussion re: early discharges (LOR 2)
- 2) 0630 notification of patients ready for discharge (LOR 1)
- Performance Management (LOR 1)
- Standardized and modifiable order sets (LOR 2)
- Identify and Mitigate Plans:
 1) Transportation- census based (LOR 1)
 2) Pharmacy- priority fills (LOR 2), Outpt. delivery to patient room (LOR 1)
 3) Consults- proactive evaluation (LOR 2)
 4) RT- process in PICU (LOR 1)
 5) Home Health Care
- Daily Feedback reports to RNs and MD’s with ID and mitigation of process and outcome measure failures (LOR 2)
- Feedback of data by HM team in conference room and by email (LOR 1)
- Auto notification to resident team that patient has met all criteria (LOR 2)
Balancing Measures – Length of Stay

Hospital Medicine Average Length of Stay
For patients with selected diagnosis

<table>
<thead>
<tr>
<th>Unit</th>
<th>FY11</th>
<th>FY13</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit 1</td>
<td>2.12</td>
<td>2.1</td>
</tr>
<tr>
<td>Unit 2</td>
<td>2.52</td>
<td>1.97</td>
</tr>
<tr>
<td>Unit 3</td>
<td>1.14</td>
<td>1.4</td>
</tr>
<tr>
<td>All</td>
<td>2.1</td>
<td>1.87</td>
</tr>
</tbody>
</table>

Balancing Measures – Readmission Rate

Hospital Medicine 30-day Readmission Rate
For patients with selected diagnosis

<table>
<thead>
<tr>
<th>Unit</th>
<th>FY11</th>
<th>FY13</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit 1</td>
<td>8.23%</td>
<td>7.32%</td>
</tr>
<tr>
<td>Unit 2</td>
<td>7.92%</td>
<td>6.20%</td>
</tr>
<tr>
<td>Unit 3</td>
<td>5.73%</td>
<td>3.36%</td>
</tr>
<tr>
<td>All</td>
<td>7.69%</td>
<td>6.19%</td>
</tr>
</tbody>
</table>
Key Drivers for Capacity Management

<table>
<thead>
<tr>
<th>IHI Drivers</th>
<th>CCHMC Initiative</th>
<th>Operations Possibilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shape / Reduce Demand</td>
<td>Predictable Care Delivery</td>
<td>Evidence Based Best Practices, Analysis of ALOS and outliers, Standardize then Customize, Eliminate unnecessary care</td>
</tr>
<tr>
<td></td>
<td>Management of Variability</td>
<td>Identify Patient Streams – Inpatient/Outpatient/OR Manage System Variation</td>
</tr>
<tr>
<td>D/C Match</td>
<td>Optimization of Flow Delivery</td>
<td>Placement initiatives – D/C Matching plans Discharge prediction and planning, Home Care, Parent Initiatives</td>
</tr>
<tr>
<td></td>
<td>Capacity Prediction</td>
<td>Integration of simulation modeling and planning “Environmental Impact” Reports for growth programs</td>
</tr>
<tr>
<td>System Re-Design</td>
<td>Capacity Management</td>
<td>Simulation for design and patient placement “Environments Impact” Planning</td>
</tr>
<tr>
<td></td>
<td>Flow: Safety Matching</td>
<td>Flow Failure Analysis, GARDIANS</td>
</tr>
</tbody>
</table>

Prediction – Model for the Future

- **Static Analytics**
 - Performing a **ONE TIME** analysis of processes with historical data in order to **PREDICT** what’s going to happen under certain circumstances.
 - **Critical Care Bed Modeling for Growth**
- **Real Time Analytics**
 - Performing **ONGOING** analysis of processes with latest available data in order to continuously **PREDICT** what's going to happen under certain circumstances.
 - **RN Bedside Nurse Staffing Model**
Critical Care Bed Predictions

- Discrete Event Simulation
- Variable Input – Growth, Length of Stay, Readmissions
- “What if” scenarios

Sample Output – Probability of Full Unit

YEAR 2-7 Forecasted PICU Bed Needs - Mid-Range/Most Likely
Bed Needs for PICU - Probability of a Full Unit
20 Replications of a 456 Period (90 Day Warnings - Mean Probability
POPULATION: Unscheduled Medical/Surgical, BMT, ENT Airway ICU Elective Cases OR CAP=3

Models future status
Allows for Safety Considerations
Construct “right size” units
Forecasted Bed Needs
Advantages of Efficiency

Estimated number of beds required for given probability of the unit being full.

<table>
<thead>
<tr>
<th>Forecast Time Frame</th>
<th>Probability of Full Unit</th>
<th>PICU Beds</th>
<th>CICU Beds</th>
<th>ICU Bed Needs</th>
<th>Combined ICUs</th>
<th>Estimated Savings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year 2</td>
<td>10%</td>
<td>34</td>
<td>27</td>
<td>61</td>
<td>56</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>5%</td>
<td>36</td>
<td>29</td>
<td>65</td>
<td>58</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>3%</td>
<td>38</td>
<td>30</td>
<td>68</td>
<td>59</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>1%</td>
<td>40</td>
<td>33</td>
<td>73</td>
<td>62</td>
<td>11</td>
</tr>
<tr>
<td>Year 5</td>
<td>10%</td>
<td>35</td>
<td>31</td>
<td>66</td>
<td>60</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>5%</td>
<td>37</td>
<td>32</td>
<td>69</td>
<td>64</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>3%</td>
<td>38</td>
<td>34</td>
<td>72</td>
<td>66</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>1%</td>
<td>41</td>
<td>37</td>
<td>78</td>
<td>71</td>
<td>7</td>
</tr>
<tr>
<td>Year 7</td>
<td>10%</td>
<td>36</td>
<td>33</td>
<td>69</td>
<td>64</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>5%</td>
<td>38</td>
<td>35</td>
<td>73</td>
<td>66</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>3%</td>
<td>39</td>
<td>37</td>
<td>76</td>
<td>68</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>1%</td>
<td>42</td>
<td>39</td>
<td>81</td>
<td>71</td>
<td>10</td>
</tr>
</tbody>
</table>

POPULATION: Unscheduled Medical/Surgical, BMT, ENT Airway ICU Elective Cases, Heart Institute Patients

Real World Impact of Business Analytics

- Bed demand predictions facilitate staffing and overflow planning – right patient – right team
- ED admit predictions improved from 40% to 70% accuracy – resource allocation
- Encourages staff to more consistently predict and document estimated discharge date, which helps guide care – system efficiency
- Uncovers scheduling issues – efficiency and access
- One-stop source to determine where there is capacity (or lack thereof) to add services (infusions, etc.) – efficiency and utilization
Environmental Impact Assessments

- Predict program demand on current institutional capacity and resources
- Utilize simulation modeling and data analytics to project future capacity needs in the areas of:
 - Inpatient beds (ICU, Step-down/Floor)
 - Outpatient (Clinical, Testing, Radiology, Therapy, Bronchoscopy)
 - Other (OR resources, pharmacy, blood products, lab)

Understanding Capacity Needs & Variability for New/Growth Programs

Utilize information from historic data, subject matter experts, market analysis, and outside sources to develop model that predicts future resource demands.
Quantify Model Results for Analysis & Planning

Number of beds needed based on probability of having a full unit (5%, 2%, 1%, 0%) and the growth estimate.

<table>
<thead>
<tr>
<th></th>
<th>Low/Conservative</th>
<th>Mid-Range/Most Likely</th>
<th>High/Aggressive Growth</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5% 2% 1% 0%</td>
<td>5% 2% 1% 0%</td>
<td>5% 2% 1% 0%</td>
</tr>
<tr>
<td>1 Yr</td>
<td>2 2 2 3 3</td>
<td>2 2 3 3 4</td>
<td>2 2 3 4 5</td>
</tr>
<tr>
<td>3 Yr</td>
<td>2 2 3 3 4</td>
<td>2 2 3 4 5</td>
<td>2 3 4 5 6</td>
</tr>
<tr>
<td>5 Yr</td>
<td>2 2 3 3 4</td>
<td>2 2 3 4 5</td>
<td>3 3 4 5 6</td>
</tr>
<tr>
<td>7 Yr</td>
<td>2 2 3 3 4</td>
<td>3 3 4 5 6</td>
<td>4 3 5 6 6</td>
</tr>
<tr>
<td>10 Yr</td>
<td>2 2 3 3 4</td>
<td>3 3 4 5 6</td>
<td>4 3 5 6 6</td>
</tr>
</tbody>
</table>

Outpatient Clinic Needs

<table>
<thead>
<tr>
<th>Year</th>
<th>Clinics/Week</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1-2</td>
</tr>
<tr>
<td>3</td>
<td>2-3</td>
</tr>
<tr>
<td>5</td>
<td>2-4</td>
</tr>
<tr>
<td>7</td>
<td>3-5</td>
</tr>
<tr>
<td>10</td>
<td>4-7</td>
</tr>
</tbody>
</table>

Key Drivers for Capacity Management

<table>
<thead>
<tr>
<th>IHI Drivers</th>
<th>CCHMC Initiative</th>
<th>Operations Possibilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shape / Reduce Demand</td>
<td>Predictable Care Delivery</td>
<td>Evidence Based Best Practices, Analysis of ALOS and outliers, Standardize then Customize, Eliminate unnecessary care</td>
</tr>
<tr>
<td></td>
<td>Management of Variability</td>
<td>Identify Patient Streams – Inpatient/Outpatient/OR Manage System Variation</td>
</tr>
<tr>
<td>D/C Match</td>
<td>Optimization of Flow Delivery</td>
<td>Placement initiatives – D/C Matching plans Discharge prediction and planning, Home Care, Parent Initiatives</td>
</tr>
<tr>
<td></td>
<td>Capacity Prediction</td>
<td>Integration of simulation modeling and planning "Environmental Impact" Reports for growth programs</td>
</tr>
<tr>
<td>System Re-Design</td>
<td>Capacity Management</td>
<td>Simulation for design and patient placement "Environments Impact" Planning</td>
</tr>
<tr>
<td></td>
<td>Flow:Safety Matching</td>
<td>Flow Failure Analysis, GARDIANS</td>
</tr>
</tbody>
</table>

James M. Anderson Center
For Health Systems Excellence

Institute for Healthcare Improvement
Staffing Prediction – Proactive Planning

- Data to Front Line Leaders – Updated daily
- Right Staff for the Right Patients
- Correct Number and Competency
- Flexible with Changing Environment
- Prediction of Needs – Be Prepared – Be Resilient

Weekly Census Prediction Report
Hospital Wide System for Safety

3 Times - Every Day

Individual Room / Floor / System Predictions – Capacity and Safety

- Floor Huddles
- PeriOp Huddle
- Outpt, Home, Psych
- ED Huddle
- ICU Huddles

Institutional Wide Bed Huddle – Capacity Management

- Pharmacy
- Pt. Transport
- Facilities

Institutional Daily Operations Brief

System Prediction – Mitigation Strategy

- Security
- Housekeeping
- P.F.E.

Operations and Prediction Meeting (Weekly)
COO, RN Leadership, In-Chiefs, Sr. VP's, Safety Director, ED Director

Make it Personal

- Don’t let the Data Drown out the Dream
- Stories not Statistics
- Names and Faces
- Accountability is Personal & Group Responsibility
- Collective Mission/Vision

James M. Anderson Center For Health Systems Excellence

Institute for Healthcare Improvement
Patient Satisfaction

• Only 3-4% of 1 Million outpatient visitors rank our care in the lower half (0-6 of 10 pts)
 • 35,000 patient per year

<table>
<thead>
<tr>
<th>Great American Ballpark</th>
<th>Paul Brown Stadium</th>
</tr>
</thead>
<tbody>
<tr>
<td>42,319</td>
<td>65,535</td>
</tr>
</tbody>
</table>

Lessons Learned

• Building “Will” to work on Flow is a challenge
 • When it works, it is not on anyone’s radar
 • If it works for me, it is not my problem….
 • When I does not work, it is someone else’s problem
 • Linkage Safety and Flow
• Speed vs Efficiency
• Work Backwards not just Forward
• Embrace Mathematics and Analytics
• Standardize processes and work flows
Thanks !